Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
J Exp Bot ; 74(21): 6692-6707, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37642225

RESUMO

Triose phosphate utilization (TPU) is a biochemical process indicating carbon sink-source (im)balance within leaves. When TPU limits leaf photosynthesis, photorespiration-associated amino acid exports probably provide an additional carbon outlet and increase leaf CO2 uptake. However, whether TPU is modulated by whole-plant sink-source relations and nitrogen (N) budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two N levels. Sink-source ratio was manipulated by panicle pruning, by using yellower-leaf variant genotypes, and by measuring photosynthesis on adaxial and abaxial leaf sides. Across all these treatments, higher leaf N content resulted in the occurrence of TPU limitation at lower intercellular CO2 concentrations. Photorespiration-associated amino acid export was greater in high-N leaves, but was smaller in yellower-leaf genotypes, panicle-pruned plants, and for abaxial measurement. The feedback inhibition of panicle pruning on rates of TPU was not always observed, presumably because panicle pruning blocked N remobilization from leaves to grains and the increased leaf N content masked feedback inhibition. The leaf-level TPU limitation was thus modulated by whole-plant sink-source relations and N budgets during rice grain filling, suggesting a close link between within-leaf and whole-plant sink limitations.


Assuntos
Oryza , Oryza/genética , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Monossacarídeos , Trioses/metabolismo , Grão Comestível/metabolismo , Folhas de Planta/metabolismo , Fosfatos/metabolismo , Aminoácidos/metabolismo
2.
Plant Physiol ; 193(3): 1797-1815, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37539947

RESUMO

Autophagy serves as an important recycling route for the growth and survival of eukaryotic organisms in nutrient-deficient conditions. Since starvation induces massive changes in the metabolic flux that are coordinated by key metabolic enzymes, specific processing steps of autophagy may be linked with metabolic flux-monitoring enzymes. We attempted to identify carbon metabolic genes that modulate autophagy using VIGS screening of 45 glycolysis- and Calvin-Benson cycle-related genes in Arabidopsis (Arabidopsis thaliana). Here, we report that three consecutive triose-phosphate-processing enzymes involved in cytosolic glycolysis, triose-phosphate-isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPC), and phosphoglycerate kinase (PGK), designated TGP, negatively regulate autophagy. Depletion of TGP enzymes causes spontaneous autophagy induction and increases AUTOPHAGY-RELATED 1 (ATG1) kinase activity. TGP enzymes interact with ATG101, a regulatory component of the ATG1 kinase complex. Spontaneous autophagy induction and abnormal growth under insufficient sugar in TGP mutants are suppressed by crossing with the atg101 mutant. Considering that triose-phosphates are photosynthates transported to the cytosol from active chloroplasts, the TGP enzymes would be strategically positioned to monitor the flow of photosynthetic sugars and modulate autophagy accordingly. Collectively, these results suggest that TGP enzymes negatively control autophagy acting upstream of the ATG1 complex, which is critical for seedling development.


Assuntos
Arabidopsis , Autofagia , Citosol/metabolismo , Autofagia/genética , Arabidopsis/metabolismo , Glicólise , Fosfatos/metabolismo , Trioses/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética
3.
Plant Cell ; 35(7): 2592-2614, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36970811

RESUMO

Modulation of photoassimilate export from the chloroplast is essential for controlling the distribution of fixed carbon in the cell and maintaining optimum photosynthetic rates. In this study, we identified chloroplast TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR 2 (CreTPT2) and CreTPT3 in the green alga Chlamydomonas (Chlamydomonas reinhardtii), which exhibit similar substrate specificities but whose encoding genes are differentially expressed over the diurnal cycle. We focused mostly on CreTPT3 because of its high level of expression and the severe phenotype exhibited by tpt3 relative to tpt2 mutants. Null mutants for CreTPT3 had a pleiotropic phenotype that affected growth, photosynthetic activities, metabolite profiles, carbon partitioning, and organelle-specific accumulation of H2O2. These analyses demonstrated that CreTPT3 is a dominant conduit on the chloroplast envelope for the transport of photoassimilates. In addition, CreTPT3 can serve as a safety valve that moves excess reductant out of the chloroplast and appears to be essential for preventing cells from experiencing oxidative stress and accumulating reactive oxygen species, even under low/moderate light intensities. Finally, our studies indicate subfunctionalization of the TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR (CreTPT) transporters and suggest that there are differences in managing the export of photoassimilates from the chloroplasts of Chlamydomonas and vascular plants.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Carbono/metabolismo , Trioses/metabolismo , Fosfatos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
4.
Appl Environ Microbiol ; 89(2): e0201622, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728421

RESUMO

Sulfoquinovose (SQ) is a major metabolite in the global sulfur cycle produced by nearly all photosynthetic organisms. One of the major pathways involved in the catabolism of SQ in bacteria such as Escherichia coli is a variant of the glycolytic Embden-Meyerhof-Parnas (EMP) pathway termed the sulfoglycolytic EMP (sulfo-EMP) pathway, which leads to the consumption of three of the six carbons of SQ and the excretion of 2,3-dihydroxypropanesulfonate (DHPS). Comparative metabolite profiling of aerobically glucose (Glc)-grown and SQ-grown E. coli cells was undertaken to identify the metabolic consequences of the switch from glycolysis to sulfoglycolysis. Sulfoglycolysis was associated with the diversion of triose phosphates (triose-P) to synthesize sugar phosphates (gluconeogenesis) and an unexpected accumulation of trehalose and glycogen storage carbohydrates. Sulfoglycolysis was also associated with global changes in central carbon metabolism, as indicated by the changes in the levels of intermediates in the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), polyamine metabolism, pyrimidine metabolism, and many amino acid metabolic pathways. Upon entry into stationary phase and the depletion of SQ, E. coli cells utilize their glycogen, indicating a reversal of metabolic fluxes to allow glycolytic metabolism. IMPORTANCE The sulfosugar sulfoquinovose is estimated to be produced on a scale of 10 billion metric tons per annum, making it a major organosulfur species in the biosulfur cycle. The microbial degradation of sulfoquinovose through sulfoglycolysis allows the utilization of its carbon content and contributes to the biomineralization of its sulfur. However, the metabolic consequences of microbial growth on sulfoquinovose are unclear. We use metabolomics to identify the metabolic adaptations that Escherichia coli undergoes when grown on sulfoquinovose versus glucose. This revealed the increased flux into storage carbohydrates through gluconeogenesis and the reduced flux of carbon into the TCA cycle and downstream metabolism. These changes are relieved upon entry into stationary phase and reversion to glycolytic metabolism. This work provides new insights into the metabolic consequences of microbial growth on an abundant sulfosugar.


Assuntos
Carbono , Escherichia coli , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicólise , Glucose/metabolismo , Glicogênio/metabolismo , Trioses/metabolismo , Enxofre/metabolismo
5.
Plant Commun ; 4(1): 100423, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35962545

RESUMO

Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.


Assuntos
Antocianinas , Açúcares , Açúcares/metabolismo , Cloroplastos/metabolismo , Plantas/metabolismo , Aclimatação , Fosfatos/metabolismo , Trioses/metabolismo
6.
NMR Biomed ; 36(2): e4837, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36151589

RESUMO

Deuterated water (2 H2 O) is a widely used tracer of carbohydrate biosynthesis in both preclinical and clinical settings, but the significant kinetic isotope effects (KIE) of 2 H can distort metabolic information and mediate toxicity. 18 O-water (H2 18 O) has no significant KIE and is incorporated into specific carbohydrate oxygens via well-defined mechanisms, but to date it has not been evaluated in any animal model. Mice were given H2 18 O during overnight feeding and 18 O-enrichments of liver glycogen, triglyceride glycerol (TG), and blood glucose were quantified by 13 C NMR and mass spectrometry (MS). Enrichment of oxygens 5 and 6 relative to body water informed indirect pathway contributions from the Krebs cycle and triose phosphate sources. Compared with mice fed normal chow (NC), mice whose NC was supplemented with a fructose/glucose mix (i.e., a high sugar [HS] diet) had significantly higher indirect pathway contributions from triose phosphate sources, consistent with fructose glycogenesis. Blood glucose and liver TG 18 O-enrichments were quantified by MS. Blood glucose 18 O-enrichment was significantly higher for HS versus NC mice and was consistent with gluconeogenic fructose metabolism. TG 18 O-enrichment was extensive for both NC and HS mice, indicating a high turnover of liver triglyceride, independent of diet. Thus H2 18 O informs hepatic carbohydrate biosynthesis in similar detail to 2 H2 O but without KIE-associated risks.


Assuntos
Glicemia , Glicogênio Hepático , Camundongos , Animais , Glicemia/metabolismo , Glicogênio Hepático/metabolismo , Glucose/metabolismo , Gluconeogênese , Água/metabolismo , Fígado/metabolismo , Glicerol , Trioses/metabolismo , Frutose/metabolismo , Fosfatos/metabolismo
8.
Int J Biol Macromol ; 173: 136-145, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482202

RESUMO

Herbivores gastrointestinal microbiota is of tremendous interest for mining novel lignocellulosic enzymes for bioprocessing. We previously reported a set of potential carbohydrate-active enzymes from the metatranscriptome of the Hu sheep rumen microbiome. In this study, we isolated and heterologously expressed two novel glucanase genes, Cel5A-h38 and Cel5A-h49, finding that both recombinant enzymes showed the optimum temperatures of 50 °C. Substrate-specificity determination revealed that Cel5A-h38 was exclusively active in the presence of mixed-linked glucans, such as barley ß-glucan and Icelandic moss lichenan, whereas Cel5A-h49 (EC 3.2.1.4) exhibited a wider substrate spectrum. Surprisingly, Cel5A-h38 initially released only cellotriose from lichenan and further converted it into an equivalent amount of glucose and cellobiose, suggesting a dual-function as both endo-ß-1,3-1,4-glucanase (EC 3.2.1.73) and exo-cellobiohydrolase (EC 3.2.1.91). Additionally, we performed enzymatic hydrolysis of sheepgrass (Leymus chinensis) and rice (Orysa sativa) straw using Cel5A-h38, revealing liberation of 1.91 ± 0.30 mmol/mL and 2.03 ± 0.09 mmol/mL reducing sugars, respectively, including high concentrations of glucose and cellobiose. These results provided new insights into glucanase activity and lay a foundation for bioconversion of lignocellulosic biomass.


Assuntos
Proteínas de Bactérias/metabolismo , Celobiose/biossíntese , Celulose 1,4-beta-Celobiosidase/metabolismo , Endo-1,3(4)-beta-Glucanase/metabolismo , Glucose/biossíntese , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucanos/metabolismo , Hidrólise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rúmen/microbiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ovinos/microbiologia , Especificidade por Substrato , Trioses/metabolismo , beta-Glucanas/metabolismo
9.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1138-1147, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793907

RESUMO

The catalytic domain (residues 128-449) of the Orpinomyces sp. Y102 CelC7 enzyme (Orp CelC7) exhibits cellobiohydrolase and cellotriohydrolase activities. Crystal structures of Orp CelC7 and its cellobiose-bound complex have been solved at resolutions of 1.80 and 2.78 Å, respectively. Cellobiose occupies subsites +1 and +2 within the active site of Orp CelC7 and forms hydrogen bonds to two key residues: Asp248 and Asp409. Furthermore, its substrate-binding sites have both tunnel-like and open-cleft conformations, suggesting that the glycoside hydrolase family 6 (GH6) Orp CelC7 enzyme may perform enzymatic hydrolysis in the same way as endoglucanases and cellobiohydrolases. LC-MS/MS analysis revealed cellobiose (major) and cellotriose (minor) to be the respective products of endo and exo activity of the GH6 Orp CelC7.


Assuntos
Proteínas de Bactérias/química , Celobiose/metabolismo , Celulase/química , Celulose 1,4-beta-Celobiosidase/química , Celulose/metabolismo , Neocallimastigales/enzimologia , Trioses/metabolismo , beta-Glucosidase/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
10.
Sci Rep ; 9(1): 13630, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541154

RESUMO

Cellulases play important roles in the dietary fibre digestion in pigs, and have multiple industrial applications. The porcine intestinal microbiota display a unique feature in rapid cellulose digestion. Herein, we have expressed a cellulase gene, p4818Cel5_2A, which singly encoded a catalytic domain belonging to glycoside hydrolase family 5 subfamily 2, and was previously identified from a metagenomic expression library constructed from porcine gut microbiome after feeding grower pigs with a cellulose-supplemented diet. The activity of purified p4818Cel5_2A was maximal at pH 6.0 and 50 °C and displayed resistance to trypsin digestion. This enzyme exhibited activities towards a wide variety of plant polysaccharides, including cellulosic substrates of avicel and solka-Floc®, and the hemicelluloses of ß-(1 → 4)/(1 → 3)-glucans, xyloglucan, glucomannan and galactomannan. Viscosity, reducing sugar distribution and hydrolysis product analyses further revealed that this enzyme was a processive endo-ß-(1 → 4)-glucanase capable of hydrolyzing cellulose into cellobiose and cellotriose as the primary end products. These catalytic features of p4818Cel5_2A were further explored in the context of a three-dimensional homology model. Altogether, results of this study report a microbial processive endoglucanase identified from the porcine gut microbiome, and it may be tailored as an efficient biocatalyst candidate for potential industrial applications.


Assuntos
Bactérias/isolamento & purificação , Celulase/metabolismo , Celulose/metabolismo , Polissacarídeos/metabolismo , Animais , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Celobiose/metabolismo , Celulase/química , Celulase/genética , Microbioma Gastrointestinal , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Suínos , Trioses/metabolismo
11.
Plant Cell Environ ; 42(12): 3241-3252, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378950

RESUMO

The triose phosphate utilization (TPU) rate has been identified as one of the processes that can limit terrestrial plant photosynthesis. However, we lack a robust quantitative assessment of TPU limitation of photosynthesis at the global scale. As a result, TPU, and its potential limitation of photosynthesis, is poorly represented in terrestrial biosphere models (TBMs). In this study, we utilized a global data set of photosynthetic CO2 response curves representing 141 species from tropical rainforests to Arctic tundra. We quantified TPU by fitting the standard biochemical model of C3 photosynthesis to measured photosynthetic CO2 response curves and characterized its instantaneous temperature response. Our results demonstrate that TPU does not limit leaf photosynthesis at the current ambient atmospheric CO2 concentration. Furthermore, our results showed that the light-saturated photosynthetic rates of plants growing in cold environments are not more often limited by TPU than those of plants growing in warmer environments. In addition, our study showed that the instantaneous temperature response of TPU is distinct from temperature response of the maximum rate of Rubisco carboxylation. The new formulations of the temperature response of TPU derived in this study may prove useful in quantifying the biochemical limits to terrestrial plant photosynthesis and improve the representation of plant photosynthesis in TBMs.


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Luz , Fosfatos/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Trioses/metabolismo , Temperatura
12.
J Exp Bot ; 70(20): 5773-5785, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31269202

RESUMO

This study aimed to understand the physiological basis of rice photosynthetic response to C source-sink imbalances, focusing on the dynamics of the photosynthetic parameter triose phosphate utilization (TPU). Here, rice (Oriza sativa L.) indica cultivar IR64 were grown in controlled environment chambers under current ambient CO2 concentration until heading, and thereafter two CO2 treatments (400 and 800 µmol mol-1) were compared in the presence and absence of a panicle-pruning treatment modifying the C sink. At 2 weeks after heading, photosynthetic parameters derived from CO2 response curves, and non-structural carbohydrate content of flag leaf and internodes were measured three to four times of day. Spikelet number per panicle and flag leaf area on the main culm were recorded. Net C assimilation and TPU decreased progressively after midday in panicle-pruned plants, especially under 800 µmol mol-1 CO2. This TPU reduction was explained by sucrose accumulation in the flag leaf resulting from the sink limitation. Taking together, our findings suggest that TPU is involved in the regulation of photosynthesis in rice under elevated CO2 conditions, and that sink limitation effects should be considered in crop models.


Assuntos
Oryza/metabolismo , Trioses/metabolismo , Dióxido de Carbono/metabolismo , Mudança Climática , Fotossíntese/fisiologia , Sacarose/metabolismo
13.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 605-615, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31205022

RESUMO

The discovery of new glycoside hydrolases that can be utilized in the chemoenzymatic synthesis of carbohydrates has emerged as a promising approach for various biotechnological processes. In this study, recombinant Ps_Cel5A from Pseudomonas stutzeri A1501, a novel member of the GH5_5 subfamily, was expressed, purified and crystallized. Preliminary experiments confirmed the ability of Ps_Cel5A to catalyze transglycosylation with cellotriose as a substrate. The crystal structure revealed several structural determinants in and around the positive subsites, providing a molecular basis for a better understanding of the mechanisms that promote and favour synthesis rather than hydrolysis. In the positive subsites, two nonconserved positively charged residues (Arg178 and Lys216) were found to interact with cellobiose. This adaptation has also been reported for transglycosylating ß-mannanases of the GH5_7 subfamily.


Assuntos
Proteínas de Bactérias/química , Celulase/química , Celulose/química , Pseudomonas stutzeri/enzimologia , Trioses/química , Celulose/metabolismo , Cristalização , Cristalografia por Raios X/métodos , Escherichia coli , Glicosilação , Especificidade por Substrato , Trioses/metabolismo
14.
J Exp Bot ; 70(6): 1755-1766, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30868155

RESUMO

During photosynthesis, plants fix CO2 from the atmosphere onto ribulose-bisphosphate, producing 3-phosphoglycerate, which is reduced to triose phosphates (TPs). The TPs are then converted into the end products of photosynthesis. When a plant is photosynthesizing very quickly, it may not be possible to commit photosynthate to end products as fast as it is produced, causing a decrease in available phosphate and limiting the rate of photosynthesis to the rate of triose phosphate utilization (TPU). The occurrence of an observable TPU limitation is highly variable based on species and especially growth conditions, with TPU capacity seemingly regulated to be in slight excess of typical photosynthetic rates the plant might experience. The physiological effects of TPU limitation are discussed with an emphasis on interactions between the Calvin-Benson cycle and the light reactions. Methods for detecting TPU-limited data from gas exchange data are detailed and the impact on modeling of some physiological effects are shown. Special consideration is given to common misconceptions about TPU.


Assuntos
Fosfatos/metabolismo , Fotossíntese/fisiologia , Fenômenos Fisiológicos Vegetais , Trioses/metabolismo
15.
Plant Physiol ; 176(3): 2496-2514, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29371249

RESUMO

Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.


Assuntos
Arabidopsis/microbiologia , Basidiomycota/fisiologia , Celulose/metabolismo , Exorribonucleases/metabolismo , Simbiose/fisiologia , Trioses/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Exorribonucleases/genética , Regulação da Expressão Gênica de Plantas , Mutação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/metabolismo , Plântula/microbiologia , Transdução de Sinais
16.
J Sci Food Agric ; 97(3): 743-752, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27145288

RESUMO

BACKGROUND: The structure of ß-glucan influences its use in cereal-based foods and feed. The objective of this study was to determine the effect of environment (E) and genotype (G) on ß-glucan fine structure and its genetic control in two-row spring barley with normal starch characteristics. RESULTS: A population of 89 recombinant inbred lines, derived from the cross of two-row spring barley genotypes Merit × H93174006 (H92076F1 × TR238), was characterized for concentration and structure of grain ß-glucan in two environments. Results showed that concentrations of ß-glucan, DP3, DP4 and DP3 + DP4 were positively correlated with each other, suggesting no preference for DP3 or DP4 subunit production in high- or low-ß-glucan lines. The concentrations of ß-glucan, DP3, DP4 and DP3:DP4 ratios were significantly influenced by genotype and environment. However, only DP3:DP4 ratio showed a significant effect of G × E interaction. Association mapping of candidate markers in 119 barley genotypes showed that marker CSLF6_4105 was associated with ß-glucan concentration, whereas Bmac504 and Bmac211 were associated with DP3:DP4 ratio. Bmac273e was associated with both ß-glucan concentration and DP3:DP4 ratio. CONCLUSION: The grain ß-glucan concentration and DP3:DP4 ratio are strongly affected by genotype and environment. Single-marker analyses suggested that the genetic control of ß-glucan concentration and DP3:DP4 ratio was linked to separate chromosomal regions on barley genome. © 2016 Society of Chemical Industry.


Assuntos
Carboidratos da Dieta/análise , Interação Gene-Ambiente , Glucosiltransferases/metabolismo , Hordeum/química , Proteínas de Plantas/metabolismo , Sementes/química , beta-Glucanas/análise , Alberta , Altitude , Ração Animal/análise , Animais , Sequência de Carboidratos , Celulose/genética , Celulose/metabolismo , Clima , Cruzamentos Genéticos , Carboidratos da Dieta/metabolismo , Marcadores Genéticos , Glucosiltransferases/genética , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Humanos , Valor Nutritivo , Melhoramento Vegetal , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Especificidade por Substrato , Tetroses/metabolismo , Trioses/metabolismo , beta-Glucanas/química , beta-Glucanas/metabolismo
17.
Planta ; 243(3): 687-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26620947

RESUMO

MAIN CONCLUSION: The triose phosphate use limitation was studied using long-term and short term changes in capacity. The TPU limitation caused increased proton motive force; long-term TPU limitation additionally reduced other photosynthetic components. Photosynthetic responses to CO2 can be interpreted primarily as being limited by the amount or activity of Rubisco or the capacity for ribulose bisphosphate regeneration, but at high rates of photosynthesis a third response is often seen. Photosynthesis becomes insensitive to CO2 or even declines with increasing CO2, and this behavior has been associated with a limitation of export of carbon from the Calvin-Benson cycle. It is often called the triose phosphate use (TPU) limitation. We studied the long-term consequences of this limitation using plants engineered to have reduced capacity for starch or sucrose synthesis. We studied short-term consequences using temperature as a method for changing the balance of carbon fixation capacity and TPU. A long-term and short-term TPU limitation resulted in an increase in proton motive force (PMF) in the thylakoids. Once a TPU limitation was reached, any further increases in CO2 was met with a further increase in the PMF but no increase or little increase in net assimilation of CO2. A long-term TPU limitation resulted in reduced Rubisco and RuBP regeneration capacity. We hypothesize that TPU, Rubisco activity, and RuBP regeneration are regulated so that TPU is normally in slight excess of what is required, and that this results in more effective regulation than if TPU were in large excess.


Assuntos
Carbono/metabolismo , Fotossíntese , Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Trioses/metabolismo , Dióxido de Carbono/metabolismo , Fosfatos/metabolismo , Temperatura , Tilacoides/metabolismo , Tempo
18.
Genome Biol Evol ; 7(11): 2955-69, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26454011

RESUMO

The establishment of a metabolic connection between host and symbiont is a crucial step in the evolution of an obligate endosymbiotic relationship. Such was the case in the evolution of mitochondria and plastids. Whereas the mechanisms of metabolite shuttling between the plastid and host cytosol are relatively well studied in Archaeplastida-organisms that acquired photosynthesis through primary endosymbiosis-little is known about this process in organisms with complex plastids. Here, we focus on the presence, localization, and phylogeny of putative triose phosphate translocators (TPTs) in the complex plastid of diatoms. These proteins are thought to play an essential role in connecting endosymbiont and host metabolism via transport of carbohydrates generated by the photosynthesis machinery of the endosymbiont. We show that the complex plastid localized TPTs are monophyletic and present a model for how the initial metabolic link between host and endosymbiont might have been established in diatoms and other algae with complex red plastids and discuss its implications on the evolution of those lineages.


Assuntos
Evolução Biológica , Proteínas de Cloroplastos/genética , Diatomáceas/genética , Proteínas de Transporte de Monossacarídeos/genética , Simbiose , Sequência de Aminoácidos , Dados de Sequência Molecular , Fosfatos/metabolismo , Filogenia , Plastídeos/genética , Trioses/metabolismo
19.
Plant J ; 77(5): 676-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24372694

RESUMO

Limitations in our understanding about the mechanisms that underlie source-sink assimilate partitioning are increasingly becoming a major hurdle for crop yield enhancement via metabolic engineering. By means of a comprehensive approach, this work reports the functional characterization of a DnaJ chaperone related-protein (named as SPA; sugar partition-affecting) that is involved in assimilate partitioning in tomato plants. SPA protein was found to be targeted to the chloroplast thylakoid membranes. SPA-RNAi tomato plants produced more and heavier fruits compared with controls, thus resulting in a considerable increment in harvest index. The transgenic plants also displayed increased pigment levels and reduced sucrose, glucose and fructose contents in leaves. Detailed metabolic and enzymatic activities analyses showed that sugar phosphate intermediates were increased while the activity of phosphoglucomutase, sugar kinases and invertases was reduced in the photosynthetic organs of the silenced plants. These changes would be anticipated to promote carbon export from foliar tissues. The combined results suggested that the tomato SPA protein plays an important role in plastid metabolism and mediates the source-sink relationships by affecting the rate of carbon translocation to fruits.


Assuntos
Metabolismo dos Carboidratos , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Inativação Gênica , Hexoses/metabolismo , Fosfoglucomutase/metabolismo , Fosfotransferases/metabolismo , Fotossíntese , Filogenia , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Trioses/metabolismo , beta-Frutofuranosidase/metabolismo
20.
J Bacteriol ; 195(16): 3752-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23772074

RESUMO

Rickettsia prowazekii is an obligate intracytosolic pathogen and the causative agent of epidemic typhus fever in humans. As an evolutionary model of intracellular pathogenesis, rickettsiae are notorious for their use of transport systems that parasitize eukaryotic host cell biochemical pathways. Rickettsial transport systems for substrates found only in eukaryotic cell cytoplasm are uncommon among free-living microorganisms and often possess distinctive mechanisms. We previously reported that R. prowazekii acquires triose phosphates for phospholipid biosynthesis via the coordinated activities of a novel dihydroxyacetone phosphate transport system and an sn-glycerol-3-phosphate dehydrogenase (K. M. Frohlich et al., J. Bacteriol. 192:4281-4288, 2010). In the present study, we have determined that R. prowazekii utilizes a second, independent triose phosphate acquisition pathway whereby sn-glycerol-3-phosphate is directly transported and incorporated into phospholipids. Herein we describe the sn-glycerol-3-phosphate and dihydroxyacetone phosphate transport systems in isolated R. prowazekii with respect to kinetics, energy coupling, transport mechanisms, and substrate specificity. These data suggest the existence of multiple rickettsial triose phosphate transport systems. Furthermore, the R. prowazekii dihydroxyacetone phosphate transport systems displayed unexpected mechanistic properties compared to well-characterized triose phosphate transport systems from plant plastids. Questions regarding possible roles for dual-substrate acquisition pathways as metabolic virulence factors in the context of a pathogen undergoing reductive evolution are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fosfatos/metabolismo , Rickettsia prowazekii/metabolismo , Trioses/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico Ativo/fisiologia , Fosfatos/química , Rickettsia prowazekii/genética , Especificidade por Substrato , Trioses/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...